引用本文: |
聂甜, 易琴, 徐荣华, 杨琳, 周欣欣, 郝敬全, 李擎虎.调肝益血汤调控肝细胞TPO分泌对IT大鼠CD34+造血干细胞向巨核细胞分化的影响[J].湖南中医药大学学报,2025,45(6):1008-1013[点击复制] |
|
|
|
本文已被:浏览 1132次 下载 1033次 |
调肝益血汤调控肝细胞TPO分泌对IT大鼠CD34+造血干细胞向巨核细胞分化的影响 |
聂甜,易琴,徐荣华,杨琳,周欣欣,郝敬全,李擎虎 |
(湖南中医药大学第一附属医院, 湖南 长沙 410007;湖南中医药大学第二附属医院, 湖南 长沙 410005) |
摘要: |
目的 探讨调肝益血汤通过促进肝细胞产生血小板生成素(TPO)对免疫性血小板减少症(IT)大鼠骨髓CD34+造血干细胞向巨核细胞分化的作用。方法 60只SD大鼠按体质量分层为空白组(10只,等体积纯净水)和造模组(50只)。造模组采用兔抗SD大鼠血清法建立IT大鼠模型,造模成功后根据随机数字表法分为模型组(等体积纯净水)、阳性对照组(3.6 mg/kg地塞米松)及中药低、中、高剂量组(4.275、8.55、17.1 g/kg调肝益血汤)。于造模成功后第3天开始灌胃。4周后处死各组大鼠,用光学显微镜检测总巨核细胞数量和产血小板型巨核细胞数量,HE染色法检测肝细胞形态,免疫组化染色法检测骨髓CD34+造血干细胞,ELISA检测血清和骨髓TPO浓度。结果 与空白组比较,模型组骨髓总巨核细胞数、产血小板型巨核细胞数减少(P<0.05),肝细胞数减少,骨髓CD34+造血干细胞数减少(P<0.05),血清和骨髓TPO浓度降低(P<0.05)。与模型组比较,阳性对照组和中药低、中、高剂量组骨髓总巨核细胞数、产血小板型巨核细胞数增多(P<0.05),肝细胞数增多,骨髓CD34+造血干细胞数增多(P<0.05),血清和骨髓TPO浓度升高(P<0.05)。与阳性对照组比较,中药低剂量组骨髓总巨核细胞数、产血小板型巨核细胞数及骨髓CD34+造血干细胞数减少(P<0.05),血清和骨髓TPO浓度降低(P<0.05);中药高剂量组骨髓总巨核细胞数、产血小板型巨核细胞数及骨髓CD34+造血干细胞数增多(P<0.05),血清和骨髓TPO浓度升高(P<0.05)。与中药低剂量组比较,中药中、高剂量组骨髓总巨核细胞数和产血小板型巨核细胞数及骨髓CD34+造血干细胞数增多(P<0.05),血清和骨髓TPO浓度升高(P<0.05)。与中药中剂量组比较,中药高剂量组大鼠骨髓总巨核细胞数、产血小板型巨核细胞数及骨髓CD34+造血干细胞数增多(P<0.05),血清和骨髓TPO浓度升高(P<0.05)。结论 调肝益血汤可能通过调控肝细胞产生TPO,促进IT大鼠骨髓CD34+造血干细胞向巨核细胞分化,从而改善IT大鼠巨核细胞成熟障碍。 |
关键词: 免疫性血小板减少症 调肝益血汤 血小板生成素 造血干细胞 巨核细胞 |
DOI:10.3969/j.issn.1674-070X.2025.06.003 |
投稿时间:2024-12-17 |
基金项目:湖南省中医药管理局项目(B2023040);湖南中医药大学校级重点课题项目(2022XYLH001)。 |
|
Effects of Tiaogan Yixue Decoction on the differentiation of CD34+ hematopoietic stem cells into megakaryocytes in IT rats by regulating the secretion of TPO in hepatocytes |
NIE Tian, YI Qin, XU Ronghua, YANG Lin, ZHOU Xinxin, HAO Jingquan, LI Qinghu |
(The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China;The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China) |
Abstract: |
Objective To investigate the effects of Tiaogan Yixue Decoction (TGYXD) on the differentiation of bone marrow CD34+ hematopoietic stem cells into megakaryocytes in immune thrombocytopenia (IT) rats by promoting thrombopoietin (TPO) production in hepatocytes.Methods Sixty SD rats were stratified by body weight into a blank group (10 rats, receiving an equal volume of purified water) and a modeling group (50 rats). The modeling group established the IT rat model using the serum method of rabbit anti-SD rats. After successful modeling, they were divided into a model group (equal volume of purified water), a positive control group (3.6 mg/kg dexamethasone), and low-, medium-, and high-dose groups of Chinese medicine (4.275, 8.55, 17.1 g/kg TGYXD, respectively) according to the random number table method. Gavage began on the third day after the successful modeling. After four weeks, the rats in each group were sacrificed. The total number of megakaryocytes and the number of platelet-producing megakaryocytes were determined by optical microscope. The morphology of hepatocytes was measured by HE staining. Bone marrow CD34+ hematopoietic stem cells were examined by immunohistochemical staining. The concentrations of TPO in serum and bone marrow were determined by ELISA.Results Compared with the blank group, in the model group, the total number of bone marrow megakaryocytes and the number of platelet-producing megakaryocytes decreased (P<0.05), the number of hepatocytes decreased, the number of bone marrow CD34+ hematopoietic stem cells decreased (P<0.05), and the concentrations of TPO in serum and bone marrow decreased (P<0.05). Compared with the model group, in the positive control group and the low-, medium-, and high-dose Chinese medicine groups, the total number of bone marrow megakaryocytes and the number of platelet-producing megakaryocytes increased (P<0.05), the number of hepatocytes increased, the number of bone marrow CD34+ hematopoietic stem cells increased (P<0.05), and the concentrations of TPO in serum and bone marrow increased (P<0.05). Compared with the positive control group, in the low-dose Chinese medicine group, the total number of bone marrow megakaryocytes, the number of platelet-producing megakaryocytes, and the number of bone marrow CD34+ hematopoietic stem cells decreased (P<0.05), and the concentrations of TPO in serum and bone marrow decreased (P<0.05); in the high-dose Chinese medicine group, the total number of bone marrow megakaryocytes, the number of platelet-producing megakaryocytes, and the number of bone marrow CD34+ hematopoietic stem cells increased (P<0.05), and the concentrations of TPO in serum and bone marrow increased (P<0.05). Compared with the low-dose Chinese medicine group, in the medium- and high-dose Chinese medicine groups, the total number of bone marrow megakaryocytes, the number of platelet-producing megakaryocytes, and the number of bone marrow CD34+ hematopoietic stem cells increased (P<0.05), and the concentrations of TPO in serum and bone marrow increased (P<0.05). Compared with the medium-dose Chinese medicine group, in the high-dose Chinese medicine group, the total number of bone marrow megakaryocytes, the number of platelet-producing megakaryocytes, and the number of bone marrow CD34+ hematopoietic stem cells increased (P<0.05), and the concentrations of TPO in serum and bone marrow increased (P<0.05).Conclusion TGYXD may promote the differentiation of bone marrow CD34+ hematopoietic stem cells into megakaryocytes in IT rats by regulating the production of TPO in hepatocytes, thus alleviating the maturation disorder of megakaryocytes in IT rats. |
Key words: immune thrombocytopenia Tiaogan Yixue Decoction thrombopoietin hematopoietic stem cell megakaryocyte |
|
 二维码(扫一下试试看!) |
|
|
|
|