引用本文: |
周逸群,胡斯佳,邹会品,伍梦玲,贺福元,石继连.干姜炮制火候数学模型的建立及验证研究[J].湖南中医药大学学报,2022,42(9):1470-1475[点击复制] |
|
|
|
本文已被:浏览 1860次 下载 551次 |
干姜炮制火候数学模型的建立及验证研究 |
周逸群,胡斯佳,邹会品,伍梦玲,贺福元,石继连 |
(湖南中医药大学药学院, 湖南 长沙 410208;中药成药性与制剂制备湖南省重点实验室, 湖南 长沙 410208;湖南中医药大学中医药超分子机理与数理特征化实验室, 湖南 长沙 410208) |
摘要: |
目的 采用化学动力学原理,结合Arrhenius公式建立定量的中药炮制火候数学模型及参数表征体系。方法 以中药制剂稳定性研究中的经典恒温法为参考,建立Arrhenius公式表征的平衡常数与温度的关系,沟通任一温度点的化学动力学关系,并定义定量火候的数学模型为单位温度下、单位时间内,物质质量的变量程度,由成分质量(M)、反应的速率常数(K)、Arrhenius频率因子(A)、摩尔气体常量(R)、反应的活化能(E)等参数组成的并与热力学温度(T)关联的函数式。以干姜挥发油中主要成分乙酸香叶酯为模型药物对该模型进行验证研究,在200~240℃下进行炮制。结果 获得了乙酸香叶酯的炮制火候与温度量变的数学公式为:H乙酸香叶酯=$\frac{0.09}{R^2}\mathrm{e}^{-\frac{14467}{T}}$。乙酸香叶酯的质量与温度量变的数学公式为:X乙酸香叶酯=$=M_2\mathrm{e}^{-\left (0.0025\mathrm{e}\frac{1446.7}{T 2}\right)12}-M_1\mathrm{e}^{-\left (0.0025\mathrm{e}\frac{1446.7}{T 1}\right)11}$。结论 所创立的干姜炮制火候数学模型能定量表征干姜炮制品加工程度与要求。 |
关键词: 炮制火候 数学模型 干姜 挥发油 乙酸香叶酯 |
DOI:10.3969/j.issn.1674-070X.2022.09.009 |
投稿时间:2021-09-06 |
基金项目:国家自然科学基金项目(81803729,82274215);湖南省自然科学基金项目(2019JJ50430);湖南省教育厅优秀青年基金项目(20B438);湖南中医药大学2020年度校级科研基金重点项目(2020XJJJ004)。 |
|
Establishment and verification of the mathematical model of processing degree of dried ginger |
ZHOU Yiqun,HU Sijia,ZOU Huipin,WU Mengling,HE Fuyuan,SHI Jilian |
(College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China;Hunan Provincial Key Laboratory of Drugability and Preparation Modification of TCM, Changsha, Hunan 410208, China;Supramolecular Mechanism and Mathematic-Physics Chracterization for Chinese Materia Medica, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China) |
Abstract: |
Objective To establish a mathematical model and parameter characterization system for the processing of traditional Chinese medicine (TCM) based on the principle of chemical kinetics and the Arrhenius formula. Methods According to the classical isothermal kinetic method in the stability research of TCM preparations, the relationship between the equilibrium constant represented by the Arrhenius formula and the temperature was established; the chemical kinetic relationship at any temperature point was communicated, and the mathematical model of quantitative processing degree was defined as a function, which means in the unit temperature and unit time, the variable degree of the mass of the substance is composed of the mass of the component (M), the rate constant of the reaction (K), the pre-exponential factor (A), the molar gas constant (R), the apparent activation energy of the reaction (E) and other parameters, and those parameters are related to thermodynamical temperature (T). The model was validated by taking geranyl acetate, the main component of the volatile oil of dried ginger, as a model drug, and it was processed at 200~240 ℃. Results The mathematical formula of processing degree and temperature change of geranyl acetate was: $H_{\text {geranyl acelate }}==\frac{0.09}{R^2} \mathrm{e}^{-\frac{14467}{T}}$; the mathematical formula for the quantitative change of the mass and temperature of geranyl acetate was: $X_{\text {geranyl acelate }}=M_2 \mathrm{e}^{(\left.-0.0025 \mathrm{e} \frac{1446.7}{T 2}\right) 12}-M_1 \mathrm{e}^{(\left.-0.0025 \mathrm{e} \frac{1446.7}{T 1}\right) 11}$. Conclusion The established mathematical model of dried ginger's processing degree can be used to quantitatively characterize the processing degree and requirements of ginger products. |
Key words: processing degree mathematical model dried ginger volatile oil geranyl acetate |
|
 二维码(扫一下试试看!) |
|
|
|
|