引用本文: |
贺佐梅,黄飞娟,周小青,吴正治,谢梦洲.大肠癌唾液蛋白指纹图谱分子诊断模型研究[J].湖南中医药大学学报,2016,36(4):19-24[点击复制] |
|
|
|
本文已被:浏览 2315次 下载 560次 |
大肠癌唾液蛋白指纹图谱分子诊断模型研究 |
贺佐梅,黄飞娟,周小青,吴正治,谢梦洲 |
(湖南中医药大学中医诊断国家重点学科, 湖南省2011数字中医药协同创新中心, 湖南 长沙 410007;广东医学院附属福田医院, 广东 深圳 518033;湖南中医药大学中医诊断国家重点学科, 湖南省2011数字中医药协同创新中心, 湖南 长沙 410007;广东医学院附属福田医院, 广东 深圳 518033;深圳大学第一附属医院, 广东 深圳 518035;深圳市老年医学研究所, 广东 深圳 518020;湖南中医药大学中医诊断国家重点学科, 湖南省2011数字中医药协同创新中心, 湖南 长沙 410007;抗肿瘤中药创制技术湖南省工程研究中心, 湖南 长沙 410007) |
摘要: |
目的 研究建立大肠癌(colorectal cancer,CRC))唾液蛋白质指纹图谱新型分子诊断模型。方法 采集34例肠癌患者、45例健康志愿者(正常组)的唾液标本,用弱阳离子交换型(WCX)纳米磁珠联合基质辅助激光解析电离飞行时间质谱(matrix assisted laser desorption ionization time-of-flight mass spectrometry,MALDI-TOF MS)技术进行检测,获得各标本的蛋白指纹图谱。用Biomarker Wizard软件分析所获得的蛋白指纹图谱找出差异蛋白,再用Biomarker Patterns 5.0.2建立鉴别诊断模型。结果 共检测到312个肠癌差异蛋白质峰,两组比值大于3(肠癌/正常对照 > 3,或者正常对照/肠癌 > 3),其中有37个差异蛋白质峰有统计学意义(P<0.05);其中有7个差异蛋白质峰肠癌组表达上调,28个差异蛋白质峰肠癌组表达下调,有35个差异蛋白质峰有显著差异(P<0.01)。筛选建立了由m/z为2 501.26、4 779.95、3 140.39的3个差异蛋白峰组成的肠癌与正常组的诊断模型,该模型的灵敏度和特异度分别为88%(30/34)和98%(44/45);通过交叉验证法进一步验证诊断模型的可靠性,结果该模型的灵敏度和特异度分别为85%(29/34)和88%(37/45)。结论 用WCX结合MALDI-TOF-MS技术建立的唾液蛋白诊断模型为肠癌的诊断提供了新途径。 |
关键词: 大肠癌 唾液 蛋白质组 分子诊断模型 蛋白指纹图谱 基质辅助激光解析电离飞行时间质谱 |
DOI:10.3969/j.issn.1674-070X.2016.04.005 |
投稿时间:2016-01-28 |
基金项目:国家自然科学基金项目资助(81273665);湖南中医药大学中医诊断学国家重点学科开放基金项目(201401)。 |
|
Establishment of Saliva Protein Fingerprint Molecular Diagnostic Models for Screening Colorectal Cancer |
HE Zuomei,HUANG Feijuan,ZHOU Xiaoqing,WU Zhengzhi,XIE Mengzhou |
(National Key Descipline of TCM Diagnosis, 2011 Collaborative Innovation Center of Digital Chinese Medicine, Hunan University of Chinese Medicine, Changsha Hunan 410007, China;Futian Affiliated Hospital of Guangdong Medical Institute, Shenzhen, Guangdong 518033, China;National Key Descipline of TCM Diagnosis, 2011 Collaborative Innovation Center of Digital Chinese Medicine, Hunan University of Chinese Medicine, Changsha Hunan 410007, China;Futian Affiliated Hospital of Guangdong Medical Institute, Shenzhen, Guangdong 518033, China;The Fist Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China;Shenzhen Institute of Geriatrics, Shenzhen, Guangdong 518020, China;National Key Descipline of TCM Diagnosis, 2011 Collaborative Innovation Center of Digital Chinese Medicine, Hunan University of Chinese Medicine, Changsha Hunan 410007, China;Hunan Engineering Research Center for the Technology of Creation & Mannufacture of Chinese Medicine for Anti-tumor, Changsha Hunan 410007, China) |
Abstract: |
Objective To establish a novel molecular diagnostic model of saliva protein fingerprint in colorectal cancer (CRC) patients. Methods Saliva samples from 34 patients with CRC, and 45 healthy people were analyzed by weak cationic-exchange magnetic beads (MB-WCX) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) methods. Subsequently, we compared the saliva peptide signatures of the two groups and obtained differently expressed peptides by using of Biomarker Wizard, then establish a diagnostic model to diagnose gastric carcinoma by using of Biomarker Patterns 5.0.2. Results 312 differentially expressed protein peaks were detected, the ratio of two groups > 3.0 (CRC/control > 3.0, or control/CRC > 3.0), including 37 protein peaks were statistically significant (P<0.05); 7 peaks were up-regulated, 28 peaks were down-regulated, there were 35 different protein peaks have significant difference (P<0.01). Further more, we screened and built a saliva proteomic models with 3 protein molecules m/z 2501.26, 4779.95, 3140.39 to distinguish CRC groups and normal groups. The sensitivity of this model was 88% (30/34), and the specificity was 98% (44/45). The reliability of this model was further verified with a sensitivity of 85% (29/34) and a specificity of 88% (37/45) by cross validation method. Conclusion Saliva proteomic profiling by using MALDI-TOF-MS combined with WCX technique is a novel potential tool for the clinical diagnosis of CRC. |
Key words: colorectal cancer saliva proteome molecular diagnostic model protein fingerprint matrix-assisted laser desorption ionization time-of-flight mass spectrometry |
|
二维码(扫一下试试看!) |
|
|
|
|