Effects of Niujiao Dihuang Decotion on IDO Expression in Peripheral Blood Mononuclear Cells of Immune Thrombocytopenia Rats

NIE Tian, JIANG Jingbo*, HE Yana, YANG Lin, ZHOU Xinxin, HAO Jiaoyuan, LIU Kai, NING Caibong
(The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China)

Abstract Objective To investigate the effect and possible mechanism of Niujiao Dihuang Decotion on indoleamine 2,3-dioxygenase (IDO) expression in peripheral blood mononuclear cells of immune thrombocytopenia (ITP) rats. Methods ITP rat model was established by rabbit anti SD rat platelet serum method in 36 SD rats, and were randomly divided into model group, positive control group and experimental group, with a blank group, 12 rats in each group. On the 7th day of modeling, rats in the experimental group and positive control group were respectively given Niujiao Dihuang Decotion and dexamethasone intervention, and rats in the model group and blank group were given the same volume of normal saline intervention. Rats in each group were sacrificed 4 weeks later. The mRNA expression levels of IDO, JAK1, STAT1 in peripheral blood mononuclear cells were detected by RT-PCR, and the protein expression level of IDO in peripheral blood mononuclear cells was detected by Western blot. Results Compared with blank group, IOD protein and mRNA expression levels of IDO, JKA1 and STAT1 in peripheral blood mononuclear cells of ITP rats in model group were decreased (P<0.05). Compared with model group, the mRNA expression levels of IDO, JAK1, STAT1 and IDO protein expression in peripheral blood mononuclear cells of ITP rats in experimental group and positive control group were significantly increased (P<0.05). Conclusion Niujiao Dihuang Decotion may promote the expression of IDO in

(Received日期) 2021-03-10

(基金项目) 湖南省教育厅科学研究项目(18C0358); 湖南中医药大学护理学一级学科开放基金项目(2019HLX07).

(作者简介) 男,博士,主治医师,研究方向: 免疫性血小板减少症的中西医防治。

(通信作者)*江劲波,男,主任医师,硕士研究生导师,E-mail:nietian198312@163.com.
免疫性血小板减少症（immune thrombocytopenia，ITP）是免疫异常介导的血小板破坏和产生不足的常见出血性疾病。细胞免疫功能紊乱，尤其是特异性自身反应性 T 细胞对血小板的破坏是 ITP 发病的重要机制。研究表明，免疫调节酶吲哚胺2,3-双加氧酶（indoleamine 2,3-dioxygenase, IDO）可以诱导血小板特异性自身反应性 T 细胞凋亡，从而减少 ITP 血小板免疫性破坏。JAK 激酶和信号转导及转录活化因子（signal transducer and activator of transcription, STAT）是许多调节细胞生长、分化、存活的关键靶点。研究发现，肝炎或自身免疫性疾病患者 JAK/STAT 信号通路失活导致调节性树突细胞 IDO 表达减少，进而影响到调节性 T 细胞的活化，这可能导致血小板特异性 T 细胞加速对自身血小板的免疫性破坏。

ITP 的中医病名为“紫癜病”，病理性质表现为本虚标实，本虚涉及气、血、肝、脾、肾，以肾虚为主，在本虚的基础上容易外感热毒、火邪等，导致血液溢出脉外，形成紫癜。本课题组在临床应用中发现牛角地黄汤能有效改善 ITP 患者出血体质，40 例 ITP 患者的治疗总有效率高达 82.5%。为进一步明确该方的药效机制，本课题组主要采用分子生物学技术研究牛角地黄汤对 ITP 大鼠模型外周血单个核细胞 IDO mRNA 和蛋白表达的影响，进一步从 JAK1/STAT1 信号分子探讨牛角地黄汤干预 ITP 大鼠外周血单个核细胞 IDO 表达的作用机制，旨在为 ITP 的中医药治疗提供实验依据。

1 材料

1.1 实验动物

健康 SPF 级雄性 SD 大鼠 48 只，购于湖南斯莱克赛达实验动物有限公司，合格证号：SCXK（湘）2019-0004，每组 6～8 只，体质量 130～170 g。室温 18～20 ℃，湿度为 68%～70%，自由进食饮水。

1.2 主要药品与试剂

牛角地黄汤药物组成为：水牛角 30 g，生地黄 24 g，赤芍 12 g，牡丹皮 9 g，淫羊藿 15 g，巴戟天 15 g，锁阳 15 g，甘草 10 g。上述中药饮片均由湖南中医药大学第一附属医院中药制剂中心提供，按《中华人民共和国药典》要求进行鉴定和质量控制。牛角地黄汤由湖南中医药大学第一附属医院制剂室用韩国东华 DHJ-02 煎药机制备，所有药物均先用冷水浸泡 30 min，其中水牛角先煎 30 min，再将其他药物放入后煎煮 30 min，真空包装，200 mL/袋，拆开包装后倒入蒸发皿中浓缩，浓缩剂含生药 0.6 g/mL。

酷酸地塞米松片（遂成药业股份有限公司，批号：2003201），抗大鼠 ID01 抗体（英国 Abcam 公司，批号：ab106134）；β-actin 内参抗体（美国 Protein-tech 公司，批号：66009-1-lg）；BCA 蛋白测定试剂盒（北京 Beyotime 公司，批号：P0012S）；鼠外周血淋巴细胞分离液（天津市瀚源生物制品科技有限责任公司，批号：LTS1077）；蛋白磷酸酶抑制剂（苏州新赛美生物科技有限公司，批号：P001）；RIPA 细胞裂解液（北京 Solarbio 公司，批号：R0020），TBST 缓冲液（北京索莱宝科技有限公司，批号：T1080）；超敏发光液（美国 advansta 公司，批号：K-12045-D50）；Trizol（美国 Thermo 公司，批号：15596026）；mRNA 逆转录试剂盒（北京康为世纪生物科技有限公司，批号：CW2569）。

1.3 主要仪器

实时荧光定量 PCR 仪（美国 Thermo 公司，型号：PIKOREAL96）；垂直电泳仪（北京六一生物科技有限公司，型号：DYY-2C）；台式冷冻离心机（湖南湘仪实验室仪器开发有限公司，型号：H1650R）；水平琼脂糖电泳槽（北京六一生物科技有限公司，型号：DYCP-31DN）；生物样品均质仪（杭州奥盛仪器有限公司，型号：BioPrep-24）；全自动化学发光/荧光图像分析系统（上海天能生物科技有限公司，型号：Tanon5200）。

2 方法

2.1 动物分组与处理

36 只 SD 大鼠参照文献[8]制备兔抗 SD 大鼠血小板血清，建立 ITP 大鼠模型，造模后血小板低于 100×10^9/L，而白细胞和红细胞数均正常为造模成功。造模后采用随机数字表法将大鼠随机分成模型组、阳性对照组、实验组，另取 12 只正常 SD 大鼠为空白组。各组大鼠造模后第 7 天灌胃给药（均按常
用实验动物和人的体表面积比值表折算成大鼠等效灌胃剂量[9]，实验组 ITPI 大鼠每次灌胃 1 mL（0.6 g/mL），1次/d；模型组 ITPI 大鼠和空白组大鼠给予等体积的生理盐水灌胃，1次/d。连续灌胃 4 周。阳性对照组 ITPI 大鼠参照成人 ITPI 诊治指南[9]给予一线大剂量化他米松连续冲击干预，每次灌胃 1 mL（0.9 mg/mL），1次/d，连续灌胃 4 d。

2.2 标本采集与制备

各组大鼠采用 0.3 mL/100 g 的 10% 水合氯醛腹腔注射麻醉，腹主动脉采血 3 mL，EDTA 抗凝。

2.3 指标检测

2.3.1 Western blot 检测外周血单个核细胞 IDO 蛋白含量

提取细胞总 RNA，用冰预冷 PBS 洗涤细胞 1 次，收集悬浮，离心半径 11 cm，3 000 r/min 离心 3 min，加入 200 μL RIPA 裂解液，离心半径 11 cm，12 000 r/min 离心 15 min，采用 BCA 法测定蛋白浓度。经 SDS-PAGE 凝胶电泳，转膜，5%脱脂牛奶室温下脱色，摇床上封闭 2 h。加入 IDO 一抗，4 ℃孵育过夜。次日一抗，用 TBST 缓冲液洗涤 3 次，每次 10 min，将滤膜转移到新的杂交袋中，加入羊抗兔 IgG 二抗，室温孵育 1 h。用 TBST 缓冲液洗涤 3 次，每次 10 min。使用超敏发光液与膜孵育 1 min，用塑料膜包裹杂交膜，在暗盒内与 X 射线摄影胶片曝光 15 min，显影冲洗。

2.3.2 RT-PCR 检测外周血单个核细胞 IDO、JAK1、STAT1 mRNA 表达

Ficoll 密度梯度离心法分离外周血单个核细胞，Trizol 提取细胞总 RNA。RNA 逆转录：取 RNA 提取物 8 μL 加入 1 μL 18 碱基 Oligo，混匀离心后 65 ℃温浴 10 min。冷却的反应液依次加入以下试剂：dNTP Mix 4 μL，RNA 引物 2 μL，RNA 逆转录酶 7 μL，缓冲液 4 μL，RNA 酶抑制剂 2 μL，基因组 DNA 清除剂 2 μL，42 ℃孵育 50 min，85 ℃孵育 5 min。逆转录后，进行荧光定量 PCR（引物序列见表 1，反应体系见表 2，PCR 程序设定参数见表 3）。实验数据分析：结果采用 2−ΔΔCt 法，计算目的基因 mRNA 转录水平的差异。

<table>
<thead>
<tr>
<th>名称</th>
<th>正向引物</th>
<th>反向引物</th>
<th>基因长度/bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDO</td>
<td>AGCGAACGGGACGGAAGACGC</td>
<td>ATGCAGGATCAGGCATCTC</td>
<td>223</td>
</tr>
<tr>
<td>JAK1</td>
<td>TGCTCTTGCACACCTTCCC</td>
<td>TCCCTCATGTCTCTGATATCC</td>
<td>301</td>
</tr>
<tr>
<td>STAT1</td>
<td>CGCGAGGAGGGAAAGCATTC</td>
<td>CTGGTGAGGCCAGGAAAGTC</td>
<td>373</td>
</tr>
<tr>
<td>β-actin</td>
<td>ACATCCGTAAGGACCTCCTACGC</td>
<td>TACTCTGCTGCTGATGACCAC</td>
<td>101</td>
</tr>
</tbody>
</table>

表 2 RT-PCR 配制反应体系

<table>
<thead>
<tr>
<th>试剂</th>
<th>体积/μL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer R 10 μM</td>
<td>1</td>
</tr>
<tr>
<td>Primer F 10 μM</td>
<td>1</td>
</tr>
<tr>
<td>dd H2O</td>
<td>11</td>
</tr>
<tr>
<td>2×SYBGREEN PCR Master Mix</td>
<td>15</td>
</tr>
</tbody>
</table>

表 3 RT-PCR 程序设定参数

<table>
<thead>
<tr>
<th>循环</th>
<th>步骤</th>
<th>温度/℃</th>
<th>时间/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>预变性</td>
<td>95</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>变性</td>
<td>95</td>
<td>10</td>
</tr>
<tr>
<td>45</td>
<td>退火</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>延伸</td>
<td>72</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>冷却</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

△Ct=内参基因的△Ct

2.4 统计学方法

采用 SPSS 19.0 软件分析数据，计量资料用“x±s”表示，所有资料进行正态性和方差齐性检验，若符合正态性和方差齐性检验，则采用 t 检验，多组比较用单因素方差分析，反之则采用秩和检验。以 P<0.05 为差异有统计学意义。

3 结果

3.1 各组大鼠外周血单个核细胞 IDO mRNA 和蛋白表达水平比较

与空白组相比，模型组大鼠外周血单个核细胞 IDO mRNA 和蛋白表达水平降低，差异有统计学意义（P<0.05）。与模型组相比，实验组和阳性对照组大鼠外周血单个核细胞 IDO mRNA 和蛋白表达水平增高，差异有统计学意义（P<0.05）。

与空白组和阳性对照组相比，实验组大鼠外周血单个核细胞 IDO mRNA 和蛋白表达水平差异无统计学意义（P>0.05）。见表 4、图 1。

3.2 各组大鼠外周血单个核细胞 JAK1、STAT1 mRNA 表达水平比较

与空白组相比，模型组大鼠外周血单个核细胞
表4 各组大鼠外周血单个核细胞IDO蛋白和mRNA表达比较（*P2，n=12）

<table>
<thead>
<tr>
<th>组别</th>
<th>IDO mRNA</th>
<th>IDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白组</td>
<td>1.07±0.07</td>
<td>0.35±0.02</td>
</tr>
<tr>
<td>模型组</td>
<td>0.38±0.05</td>
<td>0.09±0.01</td>
</tr>
<tr>
<td>阳性对照组</td>
<td>0.83±0.02</td>
<td>0.25±0.03</td>
</tr>
<tr>
<td>实验组</td>
<td>0.91±0.01</td>
<td>0.28±0.04</td>
</tr>
</tbody>
</table>

注：与空白组相比，*P<0.05；与模型组相比，*P<0.05

图1 各组大鼠外周血单个核细胞IDO蛋白表达

JAK1,STAT1 mRNA表达水平降低，尤其是模型组与实验组和阳性对照组大鼠外周血单个核细胞JAK1,STAT1 mRNA表达水平增高，差异有统计学意义（P>0.05）。与空白组与阳性对照组相比，实验组大鼠外周血单个核细胞JAK1,STAT1 mRNA表达水平差异无统计学意义（P>0.05）。见表5。

表5 外周血单个核细胞JAK1,STAT1 mRNA相对表达量比较（*P2，n=12）

<table>
<thead>
<tr>
<th>组别</th>
<th>JAK1 mRNA</th>
<th>STAT1 mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白组</td>
<td>6.3±0.16</td>
<td>9.6±0.31</td>
</tr>
<tr>
<td>模型组</td>
<td>1.97±0.22</td>
<td>4.25±0.17</td>
</tr>
<tr>
<td>阳性对照组</td>
<td>6.28±0.15</td>
<td>8.45±0.25</td>
</tr>
<tr>
<td>实验组</td>
<td>5.75±0.11</td>
<td>7.02±0.19</td>
</tr>
</tbody>
</table>

注：与空白组相比，*P<0.05；与模型组相比，*P<0.05

4 讨论

ITP是一种自身免疫性血小板抗体和（或）自身免疫性T细胞介导的血小板破坏和产生不足导致的自身免疫性疾病，以血小板减少为特征[1]。脾脏巨噬细胞等抗原提呈细胞将自身血小板膜糖蛋白（尤其是GPIIb/IIIa,GPIb/IX)提呈给CD4+ T细胞，活化后的CD4+ T细胞表达CD40L与B淋巴细胞CD40相结合诱导其产生血小板抗体，而CD8+细胞毒性T细胞则可以通过细胞毒作用加速自身血小板的破坏[23]。中医学无ITP病名，既往根据临床症状特点分为“瘀热”“发热”等范畴，第七届全国中西医结合血液病学术会议将ITP中医病名确定为“紫癜病”[34-46]。

紫癜病的病理性质主要表现为虚实错杂，急性期以邪实为主，慢性期以正虚为主，重症患者多表现为虚实并重[46]。本研究团队认为ITP病机以背虚为本，热毒为标，背虚导致瘀血不生，血小板生成障碍，亦可因虚热感热邪或引发伏毒，迫血妄行。治疗上本课题组强调温清并用，以牛角地黄汤为组方，本方以水牛角和淫羊藿为君药，水牛角寒清，清热解毒、凉血止血，淫羊藿益肾补阳，此即如王冰所言，“益火之源，以消阴翳”[46]。生地黄和黄芩天为臣药，生地黄甘寒质润，凉血解毒，补助元阳，益精，气下降火。赤芍，牡丹皮清热凉血，活血散瘀，锁阳补肾阳，益精血，甘草调和诸药，共为佐使之剂。

色氨酸是免疫微环境中T淋巴细胞赖以增殖的必需氨基酸，而IDO是色氨酸通过肾素途径降解的初始和限速酶，通过加速色氨酸分解导致犬尿氨酸等代谢产物积累，阻止T细胞的增殖和阻断T细胞的效应活性[35]。本研究发现，模型组ITP大鼠外周血单个核细胞IDO mRNA和蛋白表达均低于空白组大鼠（P<0.05）。WANG C Y等[36]研究表明，ITP患者CD4+和CD8+ T淋巴细胞IDO表达显著低于正常健康人，无法通过色氨酸分解代谢途径维持ITP的免疫耐受。由此可见，IDO作为免疫调节分子，在ITP细胞免疫异常导致血小板免疫性破坏中扮演了重要角色，提示IDO表达减少可能是ITP细胞免疫功能亢进的重要机制。

自身免疫性CD4+ T淋巴细胞和CD8+细胞毒性T细胞对血小板的免疫性损伤是ITP的主要发病机制[46]。西医常采用环孢素、长春新碱等免疫抑制剂干预ITP使其恢复自身免疫耐受平衡，然而临床疗效不佳，究其原因主要是上述免疫抑制剂并没有从源头促进ITP恢复免疫耐受，仅仅是抑制CD4+ T细胞和CD8+ T细胞的数量和活性[46]。本课题研究结果表明，牛角地黄汤干预后实验组ITP大鼠较模型组大鼠外周血单个核细胞IDO mRNA和蛋白表达显著增多（P<0.05），实验组与阳性对照组ITP大鼠外周血单个核细胞IDO mRNA和蛋白表达相比，差异无统计学意义（P>0.05），说明牛角地黄汤可能通过增加外周血单个核细胞IDO表达抑制ITP大鼠恢复自身免疫耐受，减少血小板免疫损伤，而IDO有望成为中医药干预ITP异常免疫的潜在干预靶点。高云龙等[47]研究发现，服用中药紫癜灵合剂后，治疗有效组患者的IDO在外周血T淋巴细胞表达明显升高。
癫痫和牛角地黄汤均含有水牛角、生地黄、牡丹皮，存在共同的基础方——犀角地黄汤(水牛角易犀角)，进一步表明清热凉血法可能是促进ITP外周血单个核细胞IDO表达增强的重要中医疗法，使患者已受损的免疫功能得到一定程度的恢复和改善。

针对影响IDO表达的上游机制，文献研究证实，JAK/STAT信号通路激活与IDO表达密切相关，但与ITP发生发展的相关报道较少[22]。XU Y M等[22]在287个ITP基因表达谱中发现了155个JAK/STAT异常信号分子，说明JAK/STAT信号通路参与了ITP的发病，但具体机制需要进一步探索。本研究发现，与空白组相比，模型组ITP大鼠外周血单个核细胞JAK1/STAT1 mRNA表达下降(P<0.05)，且模型组大鼠IDO mRNA和蛋白表达减少(P<0.05)，这证明JAK1/STAT1表达减少参与ITP大鼠的发病，潜在的机制可能是JAK1/STAT1表达减少影响了ITP大鼠外周血单个核细胞IDO的表达，导致细胞免疫紊乱。与模型组相比，实验组大鼠经牛角地黄汤干预后外周血单个核细胞JAK1/STAT1 mRNA表达水平增高(P<0.05)，且模型组大鼠IDO mRNA和蛋白表达增多，证实牛角地黄汤可能促进JAK1/STAT1表达，进一步影响ITP大鼠外周血单个核细胞IDO表达，减少血小板免疫性损伤。本实验基于JAK1/STAT1信号分子对牛角地黄汤改善ITP大鼠外周血单个核细胞IDO表达做了创新性探讨，但仍需进一步设计临床研究，优化基础研究，从多视角探讨牛角地黄汤干预ITP的作用机制。

参考文献

(本文编辑 贺慧诚 黎志涛)